中人网
标题:
为什么突然不显著了?
[打印本页]
作者:
Kenneth
时间:
2010-10-28 16:13
标题:
为什么突然不显著了?
朋友,你遇到的问题是原来x1,x2都各自影响y,为什么同时放进回归方程,突然两个都不显著了?
. I, p. B2 I% @" _. Z3 ?& S" i: c h
[attach]25365[/attach]
# ~, C$ R9 J* [- _
在 ppt 中第一个公式是只有x1在预测y。它的回归系数其实就是相关系数。我们假设相关 (ry1,也就是y与x1的相关) 是显著的。就是黄色的A的部分。
* e9 \( X$ ?& C% {3 ]5 W
7 s" C' j% I* g6 b
多加了x2后,回归系数 b1 已经不再是“y与x1的相关”这么简单了。它是一个半偏相关系数。从公式可以看见, 回归系数 b1变成了 ry1 减掉
「
x2 对 y 解释能力」乘于
「两个x 的相关
」
。简单来说,你可以想像这个新的回归系数是 “控制了x2后,x1对y 影响”。
3 ]+ n* Q, g( ~# M2 v
: Y; i! ?# s: r( n5 b
我不否认,x1自己对y 是有影响的,但是控制了x2后,x1对y的影响就是完全不同的意义了。如果x1与x2是很大相关的话, 控制了x2,x1对y可能就没有影响了(因为x2能够解释y 的能力是黄色的部分,多加了x1后,两个加起来还是同样是黄色的部分)。控制住x2,x1对y就没有影响了。x1与x2的相关越大,这个现象越严重。在统 计上,我们叫做“共线性”collinearity。如果是很多变量的共线性,就叫做多元共线性 multicollinearity。
' x- {" R3 W2 q0 v4 V
* U" T7 ] b. _; A4 V
解释了这个现象后,如何面对你的问题呢?问题是x1与x2是不是在你的研究中同时影响y呢?如果是的话,那没有什么可以做了。因为事实是 “控制住x2,x1对y就没有影响了”。另外一个方法,就是首先做多元分析,然后再补充以一元分析(一个一个变量来研究),并说明是因为共线性才有这样的 结果吧。(其实共线性是可以测的,有一个叫做VIF variance inflation factor)的测验可以检验共线性是否严重的。你在统计的书一定可以看见的。
, b6 ]. R3 j; K! J- w$ G! ^, _
本帖最后由 Kenneth 于 2010-10-28 16:14 编辑
: I5 w/ v, |! q: k. a6 `" {
* y- Z! |7 b% ?" u# L: z6 V
作者:
jkliang
时间:
2010-10-28 23:43
感謝Kenny的教學,我跟著問一個很基礎的問題,尚請Kenny與大家教導。
* h1 @3 ^% f- H( u" q9 |
我的問題是,控制變數和調節變數有什麼不同?我知道在統計上一個是放入x2,一個是放入x1與x2的乘積項,但是在研究中該如何進行解讀?控制變數(x2)的意義是說,在研究中會影響到x1與y之間關係的變數在分析的過程中必須被「控制」,這可不可以解讀成:因為x2會影響到x1與y的關係,所以x2調節了x1與y的關係呢?就如Kenny所說明的範例,當加入x2後,x1與y的關係不見了!這個可以說x2調節了x1與y的關係嗎?我猜,是不是必須依照研究的理論假設而定?
作者:
chienhsin
时间:
2010-10-29 11:34
回复
2楼
jkliang
的帖子
3 }1 D! t" f) H; n0 |2 z( y& b
, k% d. s; |) f; R* M* Y r
+ b; t8 a4 @3 O0 s
我想二者不太一樣。
- T6 s$ M' w6 s: z# y+ d
0 s3 ]- [: ]( Y; k! e- I( [
moderation是對「關係強度或方向」的影響,在迴歸分析裡面就是對beta weight的影響,但調節變項X2不一定對X1或Y個別有影響。
0 W5 E. b) i* L9 H6 j( @/ M
7 N, T4 V3 h1 ?/ r
控制變項因為已知對Y有關係,因此需要被控制。
" ]$ `+ d( s/ t4 E# N# T7 b$ p
本帖最后由 chienhsin 于 2010-10-29 11:38 编辑
4 E; s' X* ^. O: Y
* b+ ^# q/ `2 h! w$ f% l7 \: @6 L
作者:
bow7
时间:
2010-11-1 20:13
kenny,你好,刚刚看到你发的这个帖子,很受启发,非常感谢。我现在正在做一个课题,有几个问题想请教你:1、数据收集回来之后,做共线性检验,共线性很严重,该怎样处理呢?我知道可以用数据标准化降低共线性,但是我不知道这样做对最终的分析会有何影响。2用SPSS做探索性因子分析的时候,大多数变量都归到一个因子的下面了,这是不是说明数据的样本源有问题,而且因子之间的区分效度不高?该如何处理这种情况?3、在结构方程中,是否可以用X指标,直接做对Y潜变量的直接效应?也就是表示因果关系的直线箭头由指标直接指向潜变量。4、
http://bbs.chinahrd.net/forum.php?mod=viewthread&tid=280559
如上述链接中,图4-4-5,和图五,在结构方程中是否可以构建这样的模型?以上几个问题,请指点。谢谢!
本帖最后由 bow7 于 2010-11-1 20:16 编辑
$ E8 `$ T( P% z' B' Y# b& x
, S7 x! I5 ^$ w$ r
作者:
Kenneth
时间:
2010-11-2 11:02
bow7,
* \6 G% o* v6 H1 f$ @0 [" y: c; J
1、数据收集回来之后,做共线性检验,共线性很严重,该怎样处理呢?
+ v: Q: [* t5 r2 o$ ~! a
我猜这代表了你的模型有问题,就是有几个变量是“重复”的。在模型中删掉不要的变量吧。
& ?+ C/ j, V$ Y9 D! }& O" O. y, X
/ S- j# z7 Y& J
2用SPSS做探索性因子分析的时候,大多数变量都归到一个因子的下面了,这是不是说明数据的样本源有问题,而且因子之间的区分效度不高?该如何处理这种情况?
. S, W% l" m( e3 r
是的。问题与上面一样。我猜有两个原因:(1)你收回来的全是态度,你是用态度来估计态度,而这些态度都是非常接近的。如果是的话,你的模型本身就可能是非常 common sense,有问题。(2)你有同源方法偏差的问题。所有变量都是从同一个人问回来的。我自己不觉得有什么解决方法。如果你真的没有办法,可以看一看 Podsakoff, P.M., MacKenzie, S.M., Lee, J., & Podsakoff, N.P. (2003). Common method variance in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88, 879-903.
& c/ U# `( M$ j% }4 j. F2 _5 k
! T2 l9 V5 U5 ?7 v5 x* c- ?
3、在结构方程中,是否可以用X指标,直接做对Y潜变量的直接效应?也就是表示因果关系的直线箭头由指标直接指向潜变量。
* @; _+ u. X; N
不可以。指标是用来估计它所代表的潜变量的。
( R9 w, `- H' Y& _
% V4 U9 G# Y* h; {$ r# d
4、我根据你的 link,结果是接回这一页,所以不知道什么是图4-4-5,和图五。
. p" X, Z. d9 i0 U
作者:
bow7
时间:
2010-11-2 19:15
非常感谢kenny及时的回复,让困扰了我一段时间的问题得以解决。也非常抱歉,出现操作上的错误。现在我将图4-4-5和图五导入了。请看下面两图。在结构方程中是否可以构建这样的模型?谢谢![img][/img]
本帖最后由 bow7 于 2010-11-2 19:17 编辑
0 s9 b) s2 c! b
7 U2 y, ]/ A$ _" D* X" {6 w Q3 t! f
作者:
Kenneth
时间:
2010-11-9 20:48
回复
6楼
bow7
的帖子
; j4 F: N0 ~( B6 r. O
7 g3 H5 _+ ]! ^! [
' c7 N1 m Z8 }! t( f
bow7,我现在可以看见图形了。但是,我不明白你的意思。什么叫做:在结构方程中是否可以构建这样的模型?为什么不可以呢?你担心什么?
作者:
bow7
时间:
2010-11-18 09:21
kenny,你好,非常感谢你的指导,这个问题已经解决了。不是担心什么,而是在用lisrel做的过程中,出现了一些问题,以致让我以为这个模型不可以构建呢。谢谢kenny!
欢迎光临 中人网 (http://bbs.chinahrd.net/)
Powered by Discuz! X2.5