为了提高统计分析的信度和效度,薪酬调查所提供的数据一定要全面、真实。 在对调查数据进行整理汇总、统计分析时,可根据实际情况选取以下方法: 1.数据排列法 统计分析的方法常采用数据排列法。先将调查的同一类数据由高至低排列,再计算出数据排列中的中间数据,即25%点处、中点即50%点处和75%点处。工资水平高的企业应注意75%点处,甚至是90%点处的工资水平,工资水平低的企业应注意25%点处的工资水平,一般的企业应注意中点工资水平,表5—2是调查的会计岗的数据。 2.频率分析法 如果被调查单位没有给出某类岗位完整的工资数据,只能采集到某类岗位的平均工资数据。在进行工资调查数据分析时,可以采取频率分析法,记录在各工资额度内各类企业岗位平均工资水平出现的频率,从而了解某类岗位人员工资的一般水平。为了更直观地进行观察,还可以根据调查数据绘制出直方图(见图5—3)。从表5—3和图5—3中很容易看出,该类岗位人员的工资主要浮动范围介于1 600元和2 200元之间,这也就是大部分企业为该类岗位人员支付的工资范围。 表5—3分析的是会计岗的工资频数分布情况。 工资额度(元) 出现频数 2 400~2 599 1 2 200~2 399 2 2 000~2 199 3 1 800~1 999 4 1 600~1 799 3 1 400~1 599 2 1 200~1 399 1 图5—3会计岗的工资频率分析 3.趋中趋势分析 趋中趋势分析是统计数据处理分析的重要方法之一,具体又包括以下几种方法: (1)简单平均法 简单平均法是根据薪酬调查的数据,采用以下公式求出某类岗位基本工资额,作为确定本企业同类岗位人员工资的基本依据。这种方法使用起来比较简单,但异常值有可能会影响结果的准确性,因此采用简单平均法时,应当首先剔除异常数值,然后再作出计算。 (2)加权平均法 采用本方法时,不同企业的工资数据将会被赋予不同的权重,而权重的大小则取决于每一家企业在同类岗位上工作的员工人数。也就是说,当某企业中从事某类岗位工作的人数越多,则该企业提供的工资数据,对于最终平均值的影响也就越大。在这种情况下,规模不同的企业实际支付的工资会对最终调查结果产生不同的影响。因此,采用加权平均法处理分析数据要比简单平均法更具科学性和准确性。在调查结果基本上能够代表行业总体状况的情况下,其经过加权的平均数更能接近劳动力市场的真实状况。 (3)中位数法 采用本方法时,首先,将搜集到的全部统计数据按照大小次序进行排列之后,再找出居于中间位置的数值,即中位数作为确定某类岗位人员工资水平的依据。该方法最大的特点是可以剔出异常值即最大值和最小值对于平均工资值的影响。但准确性明显低于上述方法,它只能显示出当前劳动力市场平均薪酬水平的概况。 4.离散分析 离散分析是统计数据处理分析的重要方法之一,具体又包括标准差分析和四分位、百分位分析等几种方法。利用标准差分析可以检验各种分布值与平均值之间的差距大小,但是在薪酬调查数据分析中并不常用。在薪酬调查分析中,人们经常采用百分位和四分位的方法,分析衡量统计数据的离散程度。 (1)百分位法 所谓的百分位法,首先将某种岗位的所有薪酬调查数据从低到高排列,划分为10组,每组中所包括的样本数分别为企业调查总数的l0%;在百分位中的第5个小组中的最后一个数据必然是所有数据的中值,可以用它来近似地代表当前市场上的平均薪酬水平。 例如,某企业的工资水平处于市场的第75个百分位上,这就意味着有75%的企业的工资水平都比该企业低,只有25%的企业比它要高。在百分位分析方法中,第50个百分位是中间值。百分位分析主要应用于企业工资水平的战略定位上,因为它直接揭示了本企业工资水平在劳动力市场上的地位。再如,有些公司将员工现金薪酬总额定位在市场上的第60个、第75个甚至第90个百分位上;而有的公司则将基本工资定位在平均水平第50个百分位上,而将全部现金薪酬(基本工资加奖金或奖励)定位在第75个百分位上。 (2)四分位法 四分位分析与百分位分析的方法是类似的,只不过在进行四分位分析时,首先将某种岗位的所有薪酬调查数据从低到高排列,并划分为四组(百分位中是划分为10组),每组中所包括的数量分别为企业调查总数的l/4即25%(百分位中是10%);处在第二小组(在百分位中是第5个小组)中的卜家爨裴赛燃蔫霪二。级最后一个数据必然是所有数据的中值,可以用它来近似地代表当前劳动力市场上的平均工资水平。 5.回归分析法 回归分析法是借用一些数据统计软件,如SPSS等所提供的回归分析功能,分析两种或多种数据之问的关系,从而找出影响薪酬水平、薪酬差距或薪酬结构的主要因素以及影响程度,进而对薪酬水平、薪酬差距或薪酬结构的发展趋势进行预测。 回归分析法的应用举例: 某企业对本企业所有岗位进行岗位评价,并对各个岗位的月工资额进行统计,具体数据见表5—4。请用回归分析法对该
企业各岗位的月工资额和岗位评价得分进行分析。 表5—4 某企业月工资额与岗位评价得分表 序号 月工资额(元) 岗位评价得分 序号 月工资额(元) 岗位评价得分 1 800.O0 200.O0 16 1 650.O0 334.O0 2 820.O0 210.O0 17 1 750.O0 345.OO 3 850.OO 217.00 18 1 840.O0 356.O0 4 900.O0 228.OO 19 1 950.00 363.OO 5 930.OO 237.O0 20 2 050.O0 375.O0 6 970.O0 245.OO 21 2 150.OO 385.O0 7 1 000.00 258.O0 22 2 250.00 395.O0 8 1 060.00 265.OO 23 2 350.OO 405.O0 9 1 120.O0 271.OO 24 2 450.O0 413.00 10 1 180.OO 279.OO 25 2 600.O0 426.O0 11 1 250.OO 291.OO 26 2 800.O0 439.OO 12 1 320.O0 300.O0 27 3 000.OO 455.O0 13 1 400.O0 304.O0 28 3 400.O0 478.O0 14 1 480.O0 315.O0 29 3 900.OO 510.O0 15 1 560.OO 326.00 30 4 500.OO 550.O0 解:以该企业月工资额为因变量,以岗位评价得分为自变量,运用SPSSll.0对表5—4数据进行线性回归分析,分析结果如下: (1)月工资额与岗位得分的直观分析 由图5—4可见,月工资额与岗位评价得分基本呈线性关系,可用一元线性回归方法进行分析。 (2)月工资额与岗位评价得分的线性回归分析 分析结果: 回归方程:W—l0.085·E一1 577.986 岗位评价得分 A.确定性系数R2—0.961,趋于1,说明月工资额与岗位评价得分的线性相关性很强,月工资额能被岗位评价得分解释的部分较多,不能被解释得较少。 B.回归方程F检验的显著度P为0,小于显著性水平0.05,因此整个回归方程线性关系显著,可建立线性模型。 C.回归系数显著性丁检验中两个系数的P值均为0,小于显著性水平0.05,可见它们与被解释变量月工资额的关系显著,应保留在回归方程中。 (3)小结 该企业各岗位月工资额与岗位评价得分呈线性关系:W—l0.085·E-一1 577.986。 6.图表分析法 图表分析法是在对调查数据进行统计汇总以及对资料进行整理的基础上,首先按照一定格式编制统计表,然后制成各种统计图如直线图、柱状图、饼状图、结构图等,对薪酬调查结果进行对比分析的一种方法,由于图表分析法具有直观、形象、鲜明、突出和简洁等方面的特点,为很多公司所推崇。在一些国家还曾出版过“图说经济学”“图表统计学”“图说管理学”等类的专门著作。表5—6是国外企业采用的薪酬调查统计分析表(样式)可供读者参考。表5—6 工作岗位薪酬统计分析表(样式) 岗位名称 等级代码l 样本数量 任职人数 任职年龄: 任职时问: 教育水平2: 低限平滑值LQ 中间值MED 高限平滑值uQ 平均值AVE 1.付薪月数 2.年基本工资 3.年固定奖金 4.年可变奖金 5.物价补贴 6.饭贴 7.车贴 8.房贴 9.服装费 10.洗理费 11.节日津贴 12.防暑降温费 13.冬季取暖费 14.旅游/搬迁费 15.加班费 16.轮班津贴 17.其他 18.工资性津贴合计 19.年总现金收入 20.医疗费 21.养老金 22.住房公积金 23.福利费 24.教育费 25.工会费 注1岗位等级代码: 1级——总经理;2级——执行总监;3级——职能部门经理;4级——中级管理;5级——初 级管理;6级——班组长;7级——一般员工。 注2教育水平代码: 1级——高中或以下;2级——两年制大专;3级——三年制大专;4级——大学学士; 5级——硕士;6级——博士。
|