这是我们的研究模型。其中,Z1与Z2是调节变量。 & D1 r. ^7 ~! k$ o, x' a. e/ p
我们运用层次回归(hierarchicalregression)的方法得到了Y的预测模型。见表1。 在此处,对调节变量有两种理解: ① 调节变量与因变量的关系是否显著都无所谓,只关注其调节效应(交互项是否显著)即可。 ② 除关注调节变量的调节效应外还应关注其与因变量的关系是否显著,显著则说明调节变量也可作为解释变量。也就是除关注交互项是否显著外,调节变量与因变量的关系也是有意义的。 那么这两种理解哪种是正确的呢?在检验调节效应时,自变量与调节变量进入层次回归模型时是否需要中心化处理?若需要,中心化处理是变量减均值还是减标准差呢? 表1
7 _2 O1 G, d9 p' M! Y | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | | B | s.e | T | VIF | B | s.e | T | VIF | B | s.e | T | VIF | B | s.e | T | VIF | B | s.e | T | VIF | Constant | 2.934 | .209 | 14.042*** | | 1.892 | .198 | 9.551*** | | 1.822 | .193 | 9.429*** | | .351 | .222 | 1.578 | | -.170 | .245 | -.694 | | 性别 | .009 | .075 | .125 | 1.708 | -.064 | .066 | -.978 | 1.085 | -.045 | .064 | -.693 | 1.088 | -.072 | .059 | -1.207 | 1.09 | -.081 | .059 | -1.389 | 1.091 | 学历 | .002 | .045 | .054 | 1.045 | -.022 | .040 | -.543 | 1.046 | -.011 | .039 | -.288 | 1.048 | -.034 | .036 | -.943 | 1.052 | -.021 | .036 | -.601 | 1.058 | 年龄 | -.011 | .053 | -.212 | 1.286 | -.063 | .047 | -1.328 | 1.293 | -.067 | .046 | -1.453 | 1.294 | -.013 | .043 | -.300 | 1.311 | -.009 | .042 | -.205 | 1.311 | 职位 | -.006 | .020 | -.313 | 1.318 | .006 | .017 | .322 | 1.321 | .006 | .017 | .375 | 1.322 | .003 | .016 | .185 | 1.322 | .005 | .015 | .307 | 1.323 | X1 | | | | | .378 | .026 | 14.306*** | 1.013 | .243 | .034 | 7.224*** | 1.727 | .191 | .031 | 6.083*** | 1.766 | .166 | .031 | 5.307*** | 1.816 | X2 | | | | | | | | .035 | .006 | 6.248*** | 1.713 | .019 | .005 | 3.493*** | 1.85 | .015 | .005 | 2.762** | 1.896 | Z1 | | | | | | | | | | | .257 | .023 | 11.092*** | 1.285 | .268 | .023 | 11.693*** | 1.299 | Z2 | | | | | | | | | | | | | | -.182 | .038 | -4.752*** | 1.137 | R² | .000 | .225 | .265 | .374 | .394 | ΔR² | .000 | .224 | .041 | .109 | .019 | F | .065 | 204.650*** | 39.040*** | 123.031*** | 22.585*** |
因变量:Y 针对调节变量(Z1、Z2)的调节作用,我们提出如下假设:H1:Z1在X1与Y之间有显著的调节作用 。H2:Z1在X2与Y之间有显著的调节作用 。H3:Z2在X1与Y之间有显著的调节作用 。H4.:Z2在X2与Y之间有显著的调节作用 。 在验证上述假设时,我们想用三种做法,不知道哪种做法是正确的。方法一:在表1的基础上,step6中引入Z1×X1、Z1×X2两个交互项,step7引入Z2×X1、Z2×X2两个交互项,然后看交互项的系数是否显著。方法二:在表1的基础上,step6将Z2这一调节变量移出方程,并引入Z1×X1、Z1×X2两个交互项,看交互项的系数是否显著。Step7将Z1调节变量及上述交互项移出方程,再引入Z2,step8引入Z2×X1、Z2×X2,然后看交互项的系数是否显著,见表2。表2 - `8 {) y/ z t$ H
| Step 6 | Step 7 | Step 8 | | B | s.e | T | VIF | B | s.e | T | VIF | B | s.e | T | VIF | 常数 | .210 | .227 | .927 | | 2.294 | .240 | 9.541*** | 1.089 | 2.401 | .244 | 9.822*** | | 性别 | -.095 | .059 | -1.610 | 1.124 | -.051 | .064 | -.796 | 1.055 | -.050 | .064 | -.778 | 1.091 | 学历 | -.032 | .036 | -.910 | 1.053 | -.001 | .039 | -.028 | 1.294 | .003 | .039 | .066 | 1.057 | 年龄 | .004 | .042 | .104 | 1.339 | -.065 | .046 | -1.433 | 1.322 | -.067 | .045 | -1.476 | 1.296 | 职位 | .004 | .015 | .286 | 1.331 | .008 | .017 | .466 | 1.768 | .007 | .017 | .409 | 1.330 | X1 | .204 | .031 | 6.578*** | 1.781 | .226 | .034 | 6.698*** | 1.744 | .218 | .034 | 6.441*** | 1.784 | X2 | .015 | .005 | 2.857** | 1.882 | .032 | .006 | 5.803*** | 1.125 | .032 | .006 | 5.799*** | 1.753 | Z1 | .267 | .023 | 11.482*** | 1.344 | | | | | | | | | Z1×X1 | -.063 | .024 | -2.636** | 2.117 | | | | | | | | | Z1×X2 | .020 | .004 | 5.027*** | 2.065 | | | | | | | | | Z2 | | | | | -.135 | .041 | -3.258** | 1.125 | -.157 | .042 | -3.703*** | 1.178 | Z2×X1 | | | | | | | | | -.001 | .053 | -.011 | 2.853 | Z2×X2 | | | | | | | | | .013 | .009 | 1.544 | 2.851 | R² | 0.397 | 0.276 | 0.283 | ΔR² | 0.023 | 0.011 | 0.007 | F | 13.287*** | 10.618** | 3.202* | 7 l" K0 v, G0 J
; \- r+ ]+ I9 F2 R- J/ b7 V
; B$ x* R. l& K1 e$ h3 b- \
0 |& _7 t/ C. A! J& l+ \3 O0 k) i
9 u( q9 k$ w f" m方法三:以检验H2为例,在验证Z1在X2与Y之间的调节作用时,不再保留表1中的其它变量,重新做层次回归。以Y为因变量,将X2、Z1、Z1×X2依次进入层次回归模型中,看交互项的系数是否显著,显著则Z1的调节作用显著,否则Z1的调节作用不显著。见表3。 表3 | Step1 | Step 2 | Step 3 | | B | s.e | T | B | s.e | T | B | s.e | T | constant | 2.902 | .029 | 101.794*** | 2.902 | .026 | 111.389*** | 2.866 | .028 | 103.567*** | X2 | .060 | .004 | 13.729*** | .037 | .004 | 8.405*** | .036 | .004 | 8.198*** | Z1 | | | | .276 | .023 | 11.898*** | .289 | .023 | 12.417*** | Z1×X2 | | | | | | | .010 | .003 | 3.571*** | R² | .209 | .341 | .352 | ΔR² | .209 | .131 | .012 | F | 188.475*** | 141.555*** | 12.755*** |
因变量:Y 1 W1 X7 R: z4 ~8 H" a
用同样的方法来检验H3,结果见表4。
/ b2 w( ^/ M/ S r2 S% h* ` | Step1 | Step 2 | Step 3 | | B | s.e | T | B | s.e | T | B | s.e | T | constant | 2.902 | .029 | 101.794*** | 2.902 | .026 | 111.389*** | 2.866 | .028 | 103.567*** | X2 | .060 | .004 | 13.729*** | .037 | .004 | 8.405*** | .036 | .004 | 8.198*** | Z1 | | | | .276 | .023 | 11.898*** | .289 | .023 | 12.417*** | Z1×X2 | | | | | | | .010 | .003 | 3.571*** | R² | .209 | .341 | .352 | ΔR² | .209 | .131 | .012 | F | 188.475*** | 141.555*** | 12.755*** |
因变量:扫描频率 用同样的方法来检验H3,结果见表4。 4 O+ x+ e1 x' U5 Q. T# p
|