- 最后登录
- 2016-11-27
- 注册时间
- 2003-1-21
- 威望
- 250
- 金钱
- 16832
- 贡献
- 11934
- 阅读权限
- 255
- 积分
- 29016
- 日志
- 4
- 记录
- 0
- 帖子
- 1438
- 主题
- 69
- 精华
- 0
- 好友
- 380
    
- 注册时间
- 2003-1-21
- 最后登录
- 2016-11-27
- 积分
- 29016
- 精华
- 0
- 主题
- 69
- 帖子
- 1438
|
本帖最后由 Kenneth 于 2014-10-11 18:06 编辑 ; O/ e d6 P2 l- v6 l( [
9 d* Y8 c* n- [* ]1 ?$ r# ?% f7 L4 m梅恩,9 V' \1 |& d; @' f; V# D2 V
对不起,漏答的一点。
1 N+ d# m4 s* L) c9 W$ G, R$ W- T; ^8 u' v3 g
1. 四个样本的大小差别这么大,很难比较。一般来说,样本数越大,估计越准确、越可信。一个非常可信,一个不太可信,如何比较呢?
0 I; m# x. q1 A% d8 w4 Q0 e1 P3 ]3 M, G1 v6 ~& t
2. 你的样本数上了一千,统计上显著是很自然的。我猜你的问题是你混肴了 statistical significance 与 practical signifcance。统计显著性是统计项是否为0,显著就是 R-sq 不等于0。就算是 R-sq 是 0.0001, 只要你的样本数有1,000,000,它都会显著的。好,我们知道 R-sq 不等于0(显著)了,那等于什么呢?答案就是 等于 0.0001 了!) K, P7 C. P8 k0 C8 G* A s
8 P" ] ?' |. O8 g/ Z0 q6 N# n因此下一个问题是,纵然是 统计上显著,那么实用上是否显著呢? Is it practically significant? 这是一个主观的判断,不过R-sq等于 .02,大部分的人都会说是太少了。意思是,你所有的自变量加起来,说解释的因变量的方差都只是2%, 那实在是很少、很少。 |
|