- 最后登录
- 2016-11-27
- 注册时间
- 2003-1-21
- 威望
- 250
- 金钱
- 16832
- 贡献
- 11934
- 阅读权限
- 255
- 积分
- 29016
- 日志
- 4
- 记录
- 0
- 帖子
- 1438
- 主题
- 69
- 精华
- 0
- 好友
- 380
    
- 注册时间
- 2003-1-21
- 最后登录
- 2016-11-27
- 积分
- 29016
- 精华
- 0
- 主题
- 69
- 帖子
- 1438
|
本帖最后由 Kenneth 于 2014-10-11 18:06 编辑 8 F! b. U }. Q7 m4 E3 Z4 e
' F/ x5 e1 ^/ J% a2 d" ]8 ]
梅恩,( p% B/ Y1 r6 R. K, B5 W0 z
对不起,漏答的一点。. e/ n6 J3 {- n# C- \% h& F; E
# W4 T! H& j. i4 @( T6 y1. 四个样本的大小差别这么大,很难比较。一般来说,样本数越大,估计越准确、越可信。一个非常可信,一个不太可信,如何比较呢?7 y' f8 b9 Q1 f6 _6 N l
8 O# m+ y8 |( j6 ~# i$ G
2. 你的样本数上了一千,统计上显著是很自然的。我猜你的问题是你混肴了 statistical significance 与 practical signifcance。统计显著性是统计项是否为0,显著就是 R-sq 不等于0。就算是 R-sq 是 0.0001, 只要你的样本数有1,000,000,它都会显著的。好,我们知道 R-sq 不等于0(显著)了,那等于什么呢?答案就是 等于 0.0001 了!' h$ c8 ?' J1 n: | V+ d, U' R
9 b1 r# U9 x0 C: p& j因此下一个问题是,纵然是 统计上显著,那么实用上是否显著呢? Is it practically significant? 这是一个主观的判断,不过R-sq等于 .02,大部分的人都会说是太少了。意思是,你所有的自变量加起来,说解释的因变量的方差都只是2%, 那实在是很少、很少。 |
|